INTRODUCTION

- Worldwide, 1.6 million people are diagnosed annually with lung cancer, with an estimated 224,210 new diagnoses in 2014 in the US.8
- Approximately 80% of all lung cancer diagnoses are non-small cell lung cancer (NSCLC), and 40% are adenocarcinoma.1
- In China, lung cancer has increased by 465% in the past 30 years and has become the second leading cause of cancer-related death, with a World Health Organization-estimated 1 million diagnoses annually by 2025.6
- Standard first-line treatment options for Chinese patients with adenocarcinoma is chemotherapy (e.g., bevacizumab), with Chinese State Food and Drug Administration (CFDA)-approved targeted therapies for patients with epidermal growth factor receptor (EGFR)-mutated NSCLC.5

Study rationale

- Genomic analyses have now identified a number of genetically altered signaling pathways in NSCLC, particularly in adenocarcinoma (Figure 1).
- As a result, a number of targeted treatment options are now potentially available, and advanced NSCLC management has evolved toward individual patient subtyping based on targetable oncogenic drivers.1,8
- Most patients with molecularly characterized lung adenocarcinoma could potentially benefit from targeted treatment, and there is a need for new study designs that select patients based on targetable oncogenic genetic alterations.3

- This study investigates the innovative paradigm of allocating patients to specific treatment arms based on their genetic profile.
- The five agents studied target specific known molecular alterations in adenocarcinoma (Table 1).

METHODS

Study design

- This study is a Phase II, multiple-arm, open-label study that will enroll patients with advanced (stage IIIb/IV) lung adenocarcinoma who have failed prior treatment or are unsuitable for chemotherapy, and have received ≥2 prior lines of therapy.6
- A total of 30-35 independent and treatment arms comprising AUY922, BYL719, INC280, ceritinib (LDK378), and MEK162 treatment groups according to their tumor’s confirmed molecular alterations, in an innovative study design (Figure 2).

Key inclusion criteria

- Symptomatic central nervous system metastases that are neurologically unsalvageable or requiring increasing doses of steroids ≥4 weeks prior to study entry.
- Radiation therapy ≤4 weeks prior to study entry, with the exception of limited-field palliative radiotherapy for bone pain relief.
- Any other malignancies within the last 5 years before study entry, except for adequately treated carcinoma in situ of cervix, basal, or skin, and melanoma ≤1 cm in diameter.
- Major surgery ≤2 weeks prior to study entry or who have not recovered from side effects of such therapy.
- Previous anticancer therapy ≤4 weeks prior to the first dose of study treatment (except ≤6 weeks for nitrosourea and mitomycin) and have not recovered from the side effects of such treatment prior to the first dose of study treatment, except for alopecia.

Key exclusion criteria

- PK blood tests in Chinese patients.
- Serial blood samples collected from ≤6 patients in each arm for PK analysis (non-compartmental approach).
- Sparse blood samples from all other patients to assess PK (population PK approach).
- Optional biomarkers to study resistance mechanisms in each arm. Advise events will be assessed according to Common Terminology Criteria for Adverse Events version 4.03.
- Follow-up:

 - All patients will be followed up for safety 30 days after the last dose of the study treatment.
 - Patients who discontinue study treatment for any reason other than disease progression will be followed up for progression of disease.

- All patients will be followed up for survival.

Statistics

- Sample size was calculated based on a Bayesian approach using either a minimally informative prior (AUY922, INCY280, and binimetinib [MEK162]; n=20 for each) or an informative prior using relevant historical data (AUY922 [n=30] and ceritinib [LDK378]; n=25).
- The sample sizes will allow detection with high likelihood of statistically and clinically relevant antitumor activity.

- Each treatment arm is independent from another and will be analyzed separately.
- A Bayesian approach will be used to estimate overall response rate and to provide inferential statements for each treatment arm.
- Bayesian decision rules will be used to define clinically and statistically significant antitumor activity.
- At the time of analysis each treatment arm the respective prior distribution will be updated with all available data from patients in respective full-analysis set.
- An early futility analysis is planned for the AUY922 and binimetinib (MEK162) arms.

REFERENCES

ACKNOWLEDGMENTS

- This study was funded by Novartis Pharmaceuticals. Editorial assistance was provided by Matthew Naylor PHD, and was funded by Novartis Pharmaceuticals.